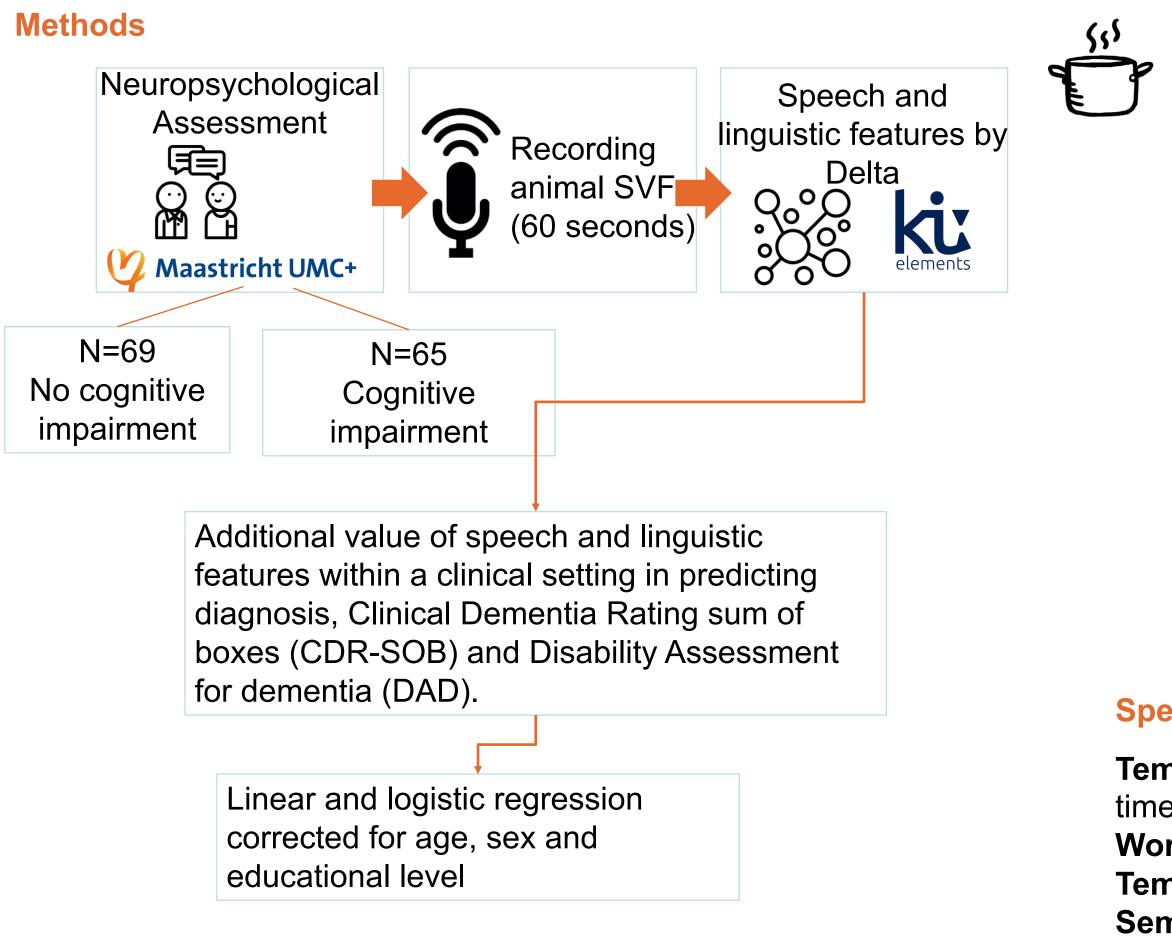


Clinical use of speech and linguistic features automatically derived from the semantic verbal fluency test


¹Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht, Netherlands, ³ki elements UG, Saarbrücken, Germany, ⁴National Institute for Research in Computer Science and Automation (INRIA), Sophia Antipolis, France, ⁵Janssen Clinical Innovation, Beerse, Belgium

Background

In the course of Alzheimer's disease, speech and language can be affected at an early stage, even before any cognitive deficits are present.¹ The Semantic Verbal Fluency (SVF) task is a cognitive task that allows other diagnostic speech and linguistic features to be retrieved, such as semantic and temporal clustering, switching, the number and length of pauses.²

Objectives

- In the present study, we investigated the (additional) value of automatically derived speech and linguistic features of the SVF task in the early diagnosis of cognitive impairments.
- Additionally, we examined the relationship between these speech and linguistic features of the SVF and disease severity and functioning in daily living.

Correspondence author:

Daphne ter Huurne, <u>dbg.terhuurne@maastrichtuniversity.nl</u>, +31 (0) 43 38 81321 Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg Maastricht University, P.O. box 616, 6200 MD, Maastricht, the Netherlands.

Daphne B. G. ter Huurne¹, Inez H.G.B. Ramakers^{1,2}, Nicklas Linz³, Alexandra König⁴, Kai Langel⁵, Hali Lindsay³, Frans R.J. Verhey^{1,2} and Marjolein de Vugt^{1,2}

Results

134 individuals were included, consisting of 69 people without cognitive impairment (Subjective Cognitive Impairment) and 65 people with cognitive impairment (Mild Cognitive Impairment and dementia). Compared to people without cognitive impairment, those with cognitive impairment were significantly older, and had a lower score on the MMSE, CDR SOB and DAD (Table 1).

Table 2 shows the results of logistic regression analyses on the association between speech and linguistic features and diagnostic classification. Lower temporal mean cluster size was significantly associated with cognitive impairment. Speech and linguistic features had an added value (55.1% Nagelkerke R^2), compared to the clinically used total word count $(R^2=0.443)$. The most important individual linguistic feature which significantly added value to the total word count was word frequency range (OR 0.41, 95%CI 0.18-0.93).

The speech and linguistic features word frequency range ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= 2.48 p = .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= .015) and temporal mean switch transition ($\beta = 0.39$; t(112)= .015) and temporal mean switch transition ($\beta = 0.39$) and temporal mean switch transition ($\beta = 0.39$) and temporal mean switch transition ($\beta = 0.39$) and temporal mean switch transition ($\beta = 0.39$) and temporal mean switch transition ($\beta = 0.39$) and temporal mean switch transition ($\beta = 0.39$) and temporal mean .07; t(112)=2.97; p < .01) were significantly associated with **CDR SOB**. Adding speech and linguistic features to the model with the traditionally used word count resulted in an increase (11.2%) of explained variance (R^2 =37.9%, p=0.057). The most important individual linguistic features which significantly added value to the total word count were word frequency range ($\beta = 0.34$; t(111)= 2.07; p = .041) and temporal mean switch transition ($\beta = .07$; t(111)= 2.88; *p* <.01).

The speech and linguistic features word frequency range ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean cluster size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean times size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean times size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean times size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean times size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean times size ($\beta = -4.78$; t(104)= -2.96; p < .01) and semantic mean ti -2.20; t(104) = -2.23; p = 0.028) were significantly associated with the **DAD**. Adding speech and linguistic features to the model with the traditionally used word count resulted in an increase (13.1%) of explained variance (R^2 =0.315, p=0.066) The most important individual linguistic features which significantly added value to the total word count were word frequency range ($\beta = -3.84$; t(103)= -2.31; p = 0.023) and semantic mean cluster size ($\beta = -2.97$; t(103)= -2.83; *p* <.01).

Table 1. Sample characteristics

	No cognitive	Cognitive	p-value					
	impairment (N=69)	impairment (N=65)						
Age - mean(SD)	62.20 (10.71)	71.83 (9.65)	< 0.001 ¹					
Male %	45 (65.2%)	39 (60.0%)	0.533 ²					
Education (low/mid/high %)	28/36/36	40/29/31	0.310 ²					
CDR sum of boxes - mean (SD)	0.77 (0.86)	1.95 (1.55)	< 0.001 ¹					
DAD-percentage – mean (SD)	94.60 (7.96)	84.10 (14.72)	< 0.001 ¹					
MMSE – mean (SD)	28.71 (1.23)	26.22 (2.52)	< 0.001 ¹					

Independent t-test

²Chi-square test

Speech and linguistic features

Temporal mean cluster size = Words that are named together in time are a cluster. The average size of the clusters based on the time in which the participant names the animals.

Word frequency range = The difference between the most and the least frequent word mentioned by a participant. **Temporal mean switch transition** = The average time it takes to switch between clusters. Semantic mean cluster size = Words that are named together in a semantic cluster. The average size of the clusters based on the time in which the participant names the animals.

diagnostic classification.

	Odds ratio	SE	95% CI Lower Limit	Upper Limit	P-value
Model 1 Age Education low Education high	1.09 0.64 0.58	0.03 0.59 0.61	1.04 0.20 0.18	1.15 2.03 1.90	0.001 0.450 0.367
Sex Model 2 Mean word frequency	0.60	0.49	0.23	1.57 7.35	0.300
Word frequency range	0.58	0.36	0.29	1.19	0.138
Temporal mean cluster size Temporal number of switches	0.32 0.83	0.57 0.31	0.11 0.45	0.98	0.047 0.540
Temporal mean time in cluster Temporal mean	1.08 1.08	0.19	0.74	1.58 1.82	0.702
transition time intracluster Temporal mean time	1.11	0.10	0.92	1.34	0.282
switch transition Semantic Mean cluster size	4.84	1.80	0.14	163.27	0.380
Semantic Number of switches Semantic Intercluster	1.01 0.95	0.13	0.78	1.29 12.25	0.963
similarity Sem. Intracluster similarity	3.65	2.68	0.02	691.25	0.629
Similarity					

Conclusions

- Automatically derived speech and linguistic features are associated with diagnostic classification, impairment in daily living and disease severity.
- Automatically derived speech and linguistic features of the SVF have an additional value in the early diagnostics of cognitive impairments.
- Word frequency range specifically seems to have an additional value in predicting diagnosis, disease severity and impairment in daily living.

References

2008;30(5):501-56.

Disord. 2018;45(3-4):198-209.

- Table 2. Binary logistic regression on the association between speech and linguistic features and

- ¹Taler V, Phillips NA. Language performance in Alzheimer's disease and mild cognitive impairment: a comparative review. J Clin Exp Neuropsychol.
- ²König A, Linz N, Tröger J, Wolters M, Alexandersson J, Robert P. Fully automatic speech-based analysis of the semantic verbal fluency task. Dement Geriatr Cogn

